不完全,不保证正确,不过部分答案通过课程实验编写的程序进行了验证。有空可能整到 BYRDocs 上,不过大概率没空。仅供参考。
有限自动机的转化部分
(来源:22-23 期末试题 1 && 2 && 3)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/10.png)
解析:
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/11.png)
(来源:19-20 期末试题 5)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/12.png)
解析:
转换后的 NFA :
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/14.png)
转换后的 DFA :
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/13.png)
(来源:19-20 期末试题 5)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/15.png)
解析:
转换后的 NFA :
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/16.png)
转换后的 DFA :
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/17.png)
(来源:19-20 期末试题 3)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/20.png)
试题 1 和 2 类似,略。
解析:
转换后的 NFA :
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/18.png)
转换后的 DFA :
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/19.png)
上下文无关文法的转化部分
(来源:某年期末 B 卷)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/1.png)
解析:
- 先化简 CFG :
1 2 3 4 5 6 7 8 9
| N = { A, B, C, D, S } T = { a, b, c } P: A -> b B -> A C | B C | b C -> b D -> a B | c S -> A B | A C | B C | C D D | b S = S
|
- 转换为 CNF :
1 2 3 4 5 6 7 8 9 10 11
| N = { A, B, C, D, S, E, G} T = { a, b, c } P: A -> b B -> A C | B C | b C -> b D -> E B | c S -> A B | A C | B C | C G | b E -> a G -> D D S = S
|
(来源:21-22 期末试题 5)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/2.png)
解析:已经是最简的 CFG ,Chomsky 范式如下:
1 2 3 4 5 6 7 8 9 10 11 12
| N = { S, A, B } T = { a, b, c } P: S -> C C | A B A -> C F | D S | a B -> D G | E S | b C -> b D -> a E -> c F -> D A G -> B B S = S
|
(来源:21-22 期末试题 4)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/3.png)
解析:
- 先化简 CFG :( A 不可达)
1 2 3 4 5 6
| N = { B, S } T = { a, b, c } P: B -> a B B | b | c S S -> a B | b b S = S
|
- 转换为 CNF :
1 2 3 4 5 6 7 8 9 10
| N = { S, B, C, D, E, F } T = { a, b, c } P: S -> C C | D B B -> D F | E S | b C -> b D -> a E -> c F -> B B S = S
|
(来源:21-22 期末试题 3)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/4.png)
解析:已经是最简的 CFG ,Chomsky 范式如下:
1 2 3 4 5 6 7 8 9 10 11
| N = { A, B, C, D, S, E, F} T = { a, b, c } P: S -> C A | D B A -> C D A | D S | a B -> D F | E S | b C -> b D -> a E -> c F -> B B S = S
|
(21-22 期末试题 1 和 2 基本没区别,不打了)
(来源:19-20 期末试题 5)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/5.png)
解析:( A 可致空,(A, B) 是单元偶对,C 非生成)
1 2 3 4 5 6 7 8
| N = { A, B, D, S } T = { a, b, c, d } P: A -> a b B B -> a | a A D -> d d d S -> a | a A | b | b A | c c D S = S
|
(来源:19-20 期末试题 4)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/6.png)
解析:( A 可致空,(S, A) 和 (S, B) 是单元偶对,C 非生成,D 不可达)
1 2 3 4 5 6 7
| N = { A, B, S } T = { a, d } P: A -> a B B -> a | a A S -> a | a A | d d d S = S
|
(来源:19-20 期末试题 3)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/7.png)
解析:( A 可致空,(S, B),(S, C),(S, D) 是单元偶对,C 非生成,D 不可达)
1 2 3 4 5 6 7
| N = { A, B, S } T = { a, d } P: A -> a B B -> A a | a S -> A a | a | a a | d d S = S
|
(来源:19-20 期末试题 2)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/8.png)
解析:( A 可致空,(S, B) 和 (S, C) 是单元偶对,C 非生成,D 不可达)
1 2 3 4 5 6 7
| N = { A, B, S } T = { a } P: A -> a B B -> a | a A S -> a | a A | a a a S = S
|
(来源:19-20 期末试题 1)
%EF%BC%9A%E5%BE%80%E5%B9%B4%E9%A2%98%E9%83%A8%E5%88%86%E4%B8%AA%E4%BA%BA%E8%A7%A3%E6%9E%90/9.png)
解析:( A 可致空,(S, B) 和 (S, C) 是单元偶对,C 非生成,D 不可达)
1 2 3 4 5 6 7
| N = { A, B, S } T = { a } P: A -> a B B -> a | a A S -> a | a A S = S
|